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I. Php. A Math. Gen. 25 (1992) 5649-5662. Printed in the UK 

The bivector Clifford algebra and the geometry of Hodge dual 
operators 

G Harnett 
Department of Mathematics, Florida Atlantic University, B o a  Raton, FL 334316991, 
USA 

Received 6 April 1992 

Absfraer This article describes features of a natural representation of the Clifford algebra 
of the apace of bivectors of a four-dimensional vector space, the representation space 
being the vector space plus ifs dual. Vectors and coyectors are then pure spinors. The 
natural map taking a pure spinor to a totally null 3-bivector is shown to be intertwined 
with the operation of lowering or raising by a metric with the adion of the H d g e  dual 
operator. New formulae exhibiting a metric in terms of its dual operator are presented, 
as are a few applications. 

1. Introduction 

Given a iour-dimensionai (re&) vector space with voiume form, we may consider the 
space of bivectors with its (split signature) metric determined by the volume form. 
The Clifford algebra of this bivector space admits a natural irreducible representation 
on the eightdimensional direct sum of the vector space and its dual. Urbantke 
has pointed out in a private communication (relayed by Jacobson) that his formula, 
(Urbantke 1984, Capovilla er al 1991a) expressing a metric in terms of a basis for 
the self-dual subspace of the Hodge dual operator, may be usefully derived from the 
point of view of this representation. The metric appears in the representative of 
the unit three-volume element of the self-dual subspace. We give an aununt of this 
and in addition develop the spinorial geometry of the representation in order to see 
precisely the geometric relation between a metric and its dual operator. The pure 
spinors of the representation are just the vectors and the covectors. They determine 

bivectors. Given a metric on the original vector space, its lowering and raising action 
on pure spinors is seen to correspond to the action of the dual operator on totally 
null 3-bivectors. This correspondence leads to formulae giving a metric in terms of 
its dual operator. 

The relation between a metric and its dual operator is of some significance in re- 

bivector Clifford algebra also provides a larger context for the (self-dual) 'bivector 
formalism' for four-dimensional Lorentzian geometry, which has been used in con- 
nection with classification of Weyl curvature tensors and the study of null congruences 
(e.g. Israel 1979). Because of the essential equivalence of metrics with dual operators 
(in the presence of a volume form), one could base four-dimensional geometry on 
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the bivector bundle with a dual operator rather than on the tangent bundle with a 
metric. In the case that the original vector space is complex, some of the geometric 
objects naturally associated with the bivector Clifford algebra (e.g. totally null '0- 
planes') are commonplace in twistor theory (Penrose and Rindler 1986). However, 
the algebra itself and its representation are usually not made explicit in this context. 
Here we observe that a non-degenerate symmetric 2-index twistor is in fact a 'metric' 
and the self-dual subspace of its associated dual operator determines the world line 
of the particle represented by the twistor. In any case, the bivector Clifford algebra, 
together with its natural representation, is an elegant and effective algebra associated 
with a four-dimensional vector space. 

2. The vector-eovector representation 

We begin by exhibiting the representation of the Clifford algebra on the vector space 
plus its dual, together with some standard attendant constructions. These include 
the spinor inner product and the isometry of the exterior algebra with the spinor 
endomorphisms. For a discussion of these constructions in a general setting one 
may consult Harvey (1990)-to whom we shall appeal frequently-or the appendix of 
Penrose and Rindler (1986). A result specific to the present setting is the isomorphism 
of the spin group of the bivectors with the special linear group of the vectors. 

Let V be a four-dimensional real vector space with a volume form E E A4V*. 
(For now we only consider the real case; there is tittle to change for the complex 
case.) The space of bivectors W := A'V carries an inner product h of signature 
type (3,3) given by 

h(F,G) := + & ( F A G )  V F,GE W .  

A bivector F is null with respect to h iff F A  F = 0 iff F is simple ( F  = U A 'U 

for some U , ' U  E V). The Clifford algebra C of (W,h )  has, up to equivalence, a 
unique faithful irreducible representation (of dimension eight). It is a pleasant fact 
that V @ V' is a natural representation space for C. 

To describe and use this representation it will be convenient to have recourse 
to abstract indices (Penrose and Rindler 1984); for V we employ the labelling set 
{a,b,c,d} and for W we employ { i , j , k , i L } .  However, in the beginning, we ac- 
commodate readers tuned to index-free descriptions, following the tensor algebra 
conventions of Sternberg (1983), which accord with those of Penrose and Rindler. In 
particular, U A 'U = +(U cz 'U - 'U @ U). 

Consider W = AzV as a subspace of V @ V and identify A2V' with W' via the 
pairing A2V' x A2V-R 

( 4  A ?I I U A 'U) = d-'(u)?I(U) - + ( v ) ? I ( U ) .  

In index notation, (@ 1 F) = 2@,,Fab. 
Hom( V ' ,  V )  given by 

Write r for the natural map W -  

(+, r(F)lir) = ( + A  ?I I F )  (+,?I E v.1. 
In index notation, TiabFi$, := 2Fab$,. For F E W define p by 

( P l I ) = Z h ( F , H ) = & ( F A H )  
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and write r for the map W-+Hom(V, V') given by 

( r ( F ) v ,  U) = (F I U A U) (U, U E V )  . 
In index notation, pab = ~ E ~ ~ ~ ~ F ~ ~  and PiabFi := 2Pab. Then the identity 

T(F) i ' (F )  = - h ( F , F ) l ,  ( F E W )  

or rciabrjIbc = -hij6:, holds. (The index-free proof uses 2F A ( i + F )  A w = 
- ( F A  F)i+w, where i + F  is the interior product.) 

It follows that the map 

y:W-Ends S : = V @ v '  (2.1) 

defied by 

is a Clifford map for h: 

y(F)2 = - h ( F , F ) l , .  

The unique extension of (2.1) to the Clifford algebra C as an algebra homomorphism 
yields a faithful irreducible representation 

y: C-End S .  (2.2) 

We shall take the set C to be the exterior algebra A W ,  to which C is naturally 
isomorphic as a vector space. The restriction of (2.2) to W is written 

The restrictions of (2.2) to A' W and A3 W ,  respectively, determine 'Cartan forms' 

and 

(2.3) 

(2.4) 

this last matrix having entries symmetric in ab. According to (2.3), the even subal- 
gebra of C lies in the direct sum End V @ End v'; thus V and V' are 'reduced' 
spinor spaces for the bivectors. 

The 'hat involution' of C 

X E X ,  . . . X ,  c X = ( - l )pXp. .  . X ,  = (-1)P(Pf')/2X (2.5) 
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(where X ,  E W), gives us a hat involution on E n d s  via the isomorphism y; thus 
r ( X )  = y ( X ) .  Up to scale, there is a unique inner product E on S such that 

E(A<,C) = E(6,AC) VA E E n d S .  

A natural choice of scale gives 

E ( u + @ , u +  4)  = 24(u) V U  E V, + E  V ' .  

As a map from S to S', E is just (u,+b) ++ (@,U).  The adjoint of A E E n d s  with 
respect to E is then 

A = P A T E  (2.6) 

where AT E End S' is the dual map. 
The inner product h on W extends to an inner product on A W given by 

together with A p  W I Aq W for p # q. If X is a simple p-vector, h ( X I X )  is its 
squared volume. Clifford multiplication respects h: if U is simple then 

h ( u X ( u Y ) =  h ( u ( u ) h ( X ( Y )  V X , Y  E C .  

The hat involution is an isometly with respect to h and the adjoint of left Clifford 
multiplication by X is multiplication by X. The inner product on E n d S  given by 

( A ,  6)  c QTr AB 

makes the representation (2.2) an isometry: 

h ( X ( Y )  = Try(X)y(Y) . (2.8) 

Putting X = y-'A in this identity yields an inversion formula for the representation 

(2.9) 
1 

(7- 'A ) IP - --Tr(y'roA) ( I p = i l . . . i p )  
Up! 

where X'v denotes the part of X E C in AP W .  (The indices on the right-hand side 
have been raised with h-l.) In particular, if 

A = (v,: O 
(2.10) 

with U a b  and V,, symmetric in ab, then y-'A lies in A3 W and 

(-/-'A)' = - ( r rabu~b + rrabvab) ( r  ij lc) . (2.11) 
8 x 3 !  
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Conversely, if X lies in A3 W then r (X) is of the form (2.10) with U"* and V,, 
symmetric. It is probably worth noting how the above relations correspond to some 
of those in the appendix of Penrose and Rindler (1986) (where our E appears as 
cor) .  Their formula (B.29). together with (B.41), namely 

in which each side is considered in End (S @ S), may be obtained by first rewriting 
the isometry identity (2.8) as 

T ~ A B  = 8h(y-1Aly-1f i )  

using (2.6) on the left-hand side, (2.7) and (2.9) on the right-hand side, and then 
extracting A and B from the result. 

A nice basis of W for computations in C is obtained by choosing a basis 
{ e o , e 1 , e 2 , e 3 }  of V normalized so that 

&(eo A e l  A ez A e 3 )  = 1 (2.12) 

and defining 

M ,  : = e o A e f  and N ,  := e, A e, (2.13) 

where Imn varies over cyclic permutations of 123. Then 2h(M,,  N,) = 4,. We 
associate with such a null basis an orthonormal basis 

X ,  := M ,  - N, and 6 := M ,  + N ,  . (2.14) 

The trivector X , X z X 3  has inner product -1, spans a negative definite subspace 
of W ,  and has a (numerical) matrix representative given by 

with respect to the basis of S given by { e m }  and its dual. The trivector Y,Y,Y3 has 
inner product -1, spans a positive definite subspace, and has representative 

(2.15) 

The identity matrix I, of the upper right envy in (2.15) represents E;=o e ,@e , ,  which 
is a type (4,O) inverse metric whose associated dual operator has self-dual subspace 
the span of the Y,; the lower left entty in (2.15) represents the metric. This will be 
explained in section 4. 

We take the orientation of V to be given by any contravariant volume element 
whose contraction with E is positive. We prescribe the orientation of W to be that of 
the volume element 

e03 e23 e31 e l Z  E A6 (2.16) 
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where {e,,,} is any oriented basis of V, ems := e,,, A e,, and juxtaposition denotes 
Clifford multiplication (or exterior multiplication). If {em] is normalized as in (2.12) 
and X ,  and Y, are defied as in (2.14). then (2.16) is the unit volume element 

0 = ~ l X , ~ , y l y , y ,  (2.17) 

whose representative is 

(2.18) 

There are two well known mappings providing (non-simply connected) double 
coverings of the identity component of the orthogonal group 0 ( 3 , 3 )  S o ( W ,  h). To 
conclude this section we show that by way of the representation (2.2) these covering 
maps are essentially identical. 

Proposition. The following diagram is commutative with exact rows: 

1 --t Z, 3 Spin,(W,h) A* SO,(W,h) --+ 1 
II 1 II (2.19) 

A 2  1 - Z, -+ SL(V) 3 S0,(A2V,h) - 1. 

The subscripts o indicate that we are taking identity components of the groups. 
The surjective homomorphism in the top sequence is the adjoint representation, 
Ad,F = X F X - ' ;  the surjective homomorphism in the bottom sequence is the 
wedging map, (A2A)(u  A v )  = Au A AV; and the middle vertical map gives the 
V-V part of the representation y, X Y y(X). ,  E End(V). The exactness of 
the rows in (2.19) is standard; and if X E Spin,(W,h) then y(X)", lies in SYV)  
(Harvey 1990, pp 203, 250). To show commutativity of the diagram we define 

T:W- -+SASC Hom(S',S) T ( F ) : =  i y ( F ) E - ' =  (F;h ;*) 
For X E Spin,(W,h) we have X-' = X (Harvey, p 200) and (2.6) yields 

T ( A d , F )  = Y ( X ) T ( F ) ~ ( X ) ~  V F  E W 

The piece of this in A2V c A 2 S  is 

(Ad,F)Oh = y ( X ) a , y ( X ) h d F C d .  

Thus the diagram (2.19) commutes. It should be noted that the middle vertical map 
is an isomorphism. The diagram, together with the obvious fact that -1 does not 
map to the identity, shows the kernel to be trivial; and the map is onto because the 
groups are connected and they have the same dimension. The fundamental groups 
of the middle groups are isomorphic to 2,. 
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3. The spinor geometry of the representation 

We now discuss the relation between reduced spinors (i.e. vectors or covectors) in 
the representation (2.2) and totally null 3-planes in the space of bivectors. The 
intersections of certain such 3-planes are totally null 2-planes, which may be described 
by a vector-covector pair. To avoid overusin the word 'bivector', we shall use the 
appellations 'bivecteur' for an element of A W and 'trivecteur' for an element of 
A3 W .  Everything here holds in the complex case. 

A subspace N of W is called totally null if every element of N is null with respect 
to h. The totally null subspace of W associated with a spinor E E S 

B 

N(t) := { F E  W l r ( F ) E  = 0) 
ir thme A i - a m c A n - 1  . . r h n n o s r o r  C i r  - mamhar nf ll n- I/* En- r I/ rlnnntn Aria.\ w "IICCVI"IY.WIU.IcI. WIlC.lC"CL < 1.7 cI "IL,"."CI "1 Y U, I . A", U c I , Y L . I I " L I  ," \U, 
by a[u]; we find 

a[u] = { U  A v I v E V )  = { ~ ' , , u Q v b  I v E V }  

and call it the a + h n e  of U.  For 4 E V', denote N(4) by PI+]; we find 
m ~ 1 ~ r 2 1  1 I n l a b 1  ~ i - r i r l  
PlPI= ' l  K e r P = I '  9,1G*ivtv J 

and call it the P-triplune of 4. The triplanes a[u]  and p[+], as U and 4 range 
over V and V', respectively, exhaust the three-dimensional totally null subspaces 
of W .  ' ho  a-triplanes (or two @triplanes) either coincide or they intersect in one 
dimension. An a-triplane and a p-triplane either intersect trivially or they intersect 
in two dimensions. %tally null triplanes and their intersections and sums have certain 
distinguished representatives in the exterior algebra, which we now describe. 

We define the a-trivecteur of U E V to be 

so that, according to (2.10) and (2.11) 

The trivecteur a(.) is simple and spans the a-triplane of U. If {U, IC,, k2,1C3} is a 
basis of V then 

a(.) = e - ' ( u A I C , ) ( u / \ k , ) ( u ~ k ~ )  (3.3) 

where e = ~ ( ~ ~ l c ~ ~ l c ~ ~ l c ~ ) ,  whichcould be arranged to be 1, and where juxtaposition 
denotes Clifford multiplication (or exterior multiplication in A W). This may be seen 
by computing with the Cartan 3-form (2.4) 

r ( u  A IC,, \a,- ~ +r/ 1 pi ,  IC,),, r(u i\ k 3 j d b  e u'u'.  

One can obtain (3.1) in a somewhat more geometrical way by considering the map 
U,,: V-W[U] given by v Y U A U and its wedge, 

A'(u,,): A'V- /\'a[u] 
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which annihilates a(.) and thus determines an element of the tensor product of 
the annihilator of a(u) in W' with A' a[.]. Using h-' to 'raise the index' on the 
annihilator piece and skew-symmetrizing the result gives a( U) up to a constant factor. 

We define the p-trivecreur of + E v' to be 

so that 

(3.4) 

(3.5) 

If {k1, k2,k3} is a basis of ker + and +(U) # 0 then 

wnere f = E ( U  A k1 A k, A k3j-2+(z))2. 
Left multiplication by the volume element q leaves an a-trivecteur invariant and 

reverses the sign of a p-trivecteur, meaning these are selfdual and anti-self-dual, 
respectively, with respect to this duality operation in A3 W .  Inner products of a- and 
0-trivecteurs are easily computed using their representatives (3.2) and (3.5) in the 
isometry identity (2.8) together with the fact that the hat involution does not affect 

.& 
h ( 4 ~ )  14~)) = h(P(+) IP(?1)) = 0 

The vanishing of the inner product in (3.7) is equivalent to the intersection of a[u] 
and @[+I being non-trivial and hence two-dimensional. 

X I  0 14",)1 c'uy L" JGG L l l O L  r * n y  rurnuy UUll u1pa'Lc "I r "  L.II.n,U an %.IC I.llr.- 

section of an a-triplane and a P-triplane. Such an intersection can be represented 
algebraically. If U E V and + E V' are non-zero and $(U) = 0, then 

@(+) = f ( k , A k , ) ( k , A k , ) ( ~ , A ~ , )  (3.6) 

For n o n - z e ~  U, z) E +, + E 'v" -we rm; 
and h(a (v )  I@(+)) = $+(U)" 

(3.7) 

T& :- C,.:-l.. "--. +,. --" +h"r -..--. r-tnl1.s n..ll  h.i-10-0 in > A >  n-irnr 11c +ha :-tar 

(3.8) 

and the right-hand side of (3.8) is a simple hivecteur spanning the totally null biplane 
a[u]np[$]  = N ( ; ) .  In fact, if 

then 
t f S p a n { u , v , w ) = k e r $  

(3.9) 

where e = ~ ( i  A U A z) A w). To verify (3.9) one calculates the representative of 
the right-hand side with the Cartan 2-form (2.3). To get (3.8), which lies in A* W 
by (3.9), one uses the inversion formula (2.9) (cf Cartan (1981, section 124), who gives 
the conditions +(U) = 0 and the right-hand side of (3.8) being non-zero for a[u] 
and @[$I to intersect non-trivially). The four-dimensional sum a[u] t @[+]-also the 
suuspace urrnuguiiai LU uic UIL~:~~GL.LIVII-W D ~ ~ J L J L C U  uy .~~L ._... .._L __-_ - 9  I- rL- :-A---*-.:-- :- m..m--oA h., 

where the juxtaposition is Merior multiplication in A W (not the same as Clifford 
multiplication in this case). 
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4. Metries and dual operators 

In the two previous sections our basic data were simply a four-dimensional vector 
space V and a volume form E ,  the latter involviig only a choice of scale (this 
choice being immaterial to much of the spinor geometry). Into thii arena one may 
consider introducing further structure on V and examining its effect in W = A2V 
(cf Urbantke 1989), for which the natural Clifford algebra representation may be a 
useful tool. Here we consider an inner product, or metric, on V; in this case induced 
structures in the Clifford algebra of W are enough to identify the metric up to sign. 

Given a metric g on V, an associated dual operator 'D acting on bivectors is 
defined by 

gp) ( 'DF,G)=  € ( F A G )  V F , C s  W 

where g(2) is the induced inner product on A2V defined in the manner of h( I ) in 
(2.7) and E has been normalized so that E ~ ~ ~ ~ E , ~ ~ ~  = 324, indices being raised with 
g-'. This yields the formula 

in which we consider g-' and P as appropriate homomorphisms; in index notation 

'DF = g- 'Fg- '  

(DF)'* = gacgbdFccd = ~ E ~ ~ ~ ~ F ~ ~  

We also have 
('DF). = f g F g  

the sign being that of 'D2. Such dual operators have exactly two eigenvalues, of 
opposite sign, each with a three-dimensional eigenspace. By factorizing y ( V F )  in 
terms of matrices involving g, we shall see that the representatives under y of the 
volume elements of the eigenspaces involve the metric in a simple way. 

Suppose 'D2 = 1, which occurs for a metric g of definite or split signature type. 
Then 2, has eigenvalues kl with corresponding eigenspaces Wt and W-.  

Theorem. There exists a unique volume element Z of W +  such that 

( 4 4  

Proof. If we d&e Z to be the inverse under y of the right-hand side of (4.1), then 
for any F E W 

and hence 
-@F) = - d Z ) y ( F ) y ( Z )  (4.b) 

V F = Z F Z .  (4.26) 

Ad,F = - Z F Z - '  = - V F .  (4.3) 

To identify Z ,  we observe that, under the twisted adjoint representation z, Z gives - 
Since xz preserves W and h ( Z I Z )  = 1 by (2.8), Z E P in(W,h)  (Harvey 1990, 
p 203). Moreover, Z covers the reflection -Z, E O ( W , h )  along the self-dual 
subspace W+. Now, there are exactly two elements in P in(W,h)  that cover this 
reflection, namely the two unit volume elements of Wt (Harvey 1990, p 198). Thus 
Z is one of them. 0 
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Some remarks: the identity (4.3) (valid for any volume element Z of W + )  may 
be verified directly by using the fact that Z commutes with elements of W+ and 
anticommutes with elements of the anti-self-dual subspace W-. The dual operator 
itself, which reflects along W - ,  is covered in Pin(W,h) by the two unit volume 
elements of W-, one of which is 

z ‘ = Y - l ( - g  0 9-1 ) 
(4.4) 

- 
that is, V = Ad,,, which amounts to writing a factorization of y ( V F )  slightly 
different from (4.2a). It follows from h(Z1Z) = 1 that W+ has signature type 
(+ + +) or (+ - -) with respect to h. For a metric of definite signature, W+ in fact 
has type (+ + +) (Hamett 1989, section 3). If {e,,,} is an orthonormal basis for the 
metric, the of (2.14) form a basis of self-dual bivectors and 2 = Y,Y,Y3 satisfies 
(4.1). On the other hand, the X ,  of (2.14) give Z’ = XlX,X3 satisfying (4.4). In 
the split signature case W+ has type (+ - -). If {e,,,} is an oriented orthonormal 
basis for the metric then Z = YlX,X3  satisfies (4.1) and Z’ = X,Y,Y3 satisfies 

Now suppose 0’ = -1, which occurs for a Lorenzian metric g. Then 2, has 
eigenvalues f i  with corresponding eigenspaces W+ and W -  in the complexification 
W, of W .  Note that 2, is not a reflection but i’D is. To deal with this case we 
complexify the representation y. 

Theorem. There exists a unique volume element S of W+ such that 

(4.4). 

-dS)= ( ig  0 9- ol) . (4.5) 

Proof. Define S to be the inverse under y of the right-hand side of (4.5). Then 
S E A3WC and, by considering y(VDF), we see that V F  = S F S  for any F E W,. 
Thus 

- 
A d S F  = -SFS-’ = i V F  

which gives the reflection of F along the selfdual subspace Wt. It follows that S is 
one of the two volume elements of W +  such that S2 = i. 0 

Pin!%, we do have 8s E PinW,, We chose S for convenience. Though S 
where 8 = e-ir/4; for this, 

where = @‘g. A volume element such as S for Wt may be obtained as S = 
SlS2S,, where S, = M ,  - iN, and the M, and N, are defined as in (2.13) with 
{em} being an oriented orthonormal basis for the metric. By considering r(’DF) 
directly for F E  W, we find that 

V F  = q Z F Z  (4.6) 
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where 11 is the unit volume element (2.17) of A W and Z is again as in (4.1). The 
relation with S is 

Z = & R e ( O S ) = R e ( S ) + I m ( S ) .  

Note that s E W -  and that the volume element of W is r~ = iSS. With these facts 
one can verify directly that 'DDF = 7ZF.Z.  We could have found the appropriate Z 
by direct computation; for example, with a basis {e,,,} and M,, etc. as above, the 
g-' part of y(Z)  is 

0 9-  0 eo @ eo - el @ e ,  - e2 @ e2 - e3 @ e3 
( 0  a ' ) =  (0 0 

which is the image under y of 

a ( e o ) - a ( e l ) - a ( e 2 ) - a ( e 3 )  = M , M 2 M , - M , N 2 N 3 - N , M 2 N 3 - N , N 2 M 3  

= Re(S,S,S,). 

Let us he more explicit about the formula for a metric in terms of a self-dual 
volume element. In the case 'Dz = 1, from (4.1) and (2.4) we have 

gab = € i j k a b Z  i+ - - r iaCrjcdrkdaziJk.  (4.7) 

This can be written in terms of an arbitrary basis Q , ,  Q2,  Q3 of W+ as 

this being a sum over permutations of 123 in the numerical indices i j k, where E'J 

is alternating with = 1 and where Q = Q1QZQ3. The quantity h ( Q l 2 )  is 
M Z ( Q I Q ) * / ~  according to whether the orientation of Q is the same or opposite to 
that of 2; and the quantity h(QIQ), we recall, is the squared volume of Q: 

WQIQ)  = det [ h ( Q i , Q J ) ]  

which is always positive, since h(Z1Z) = 1. I f  'D2 = -1 we start with (4.5) to obtain 
(4.8) again with S in place of Z. The metric's dependence on the initial choice of 
volume form E E A4V* makes it a tensor density, 

g [ h ]  = x"2g . 
Formula (4.8) was given by Urbantke (1984). 

There are other noteworthy ways of expressing the metric in terms of the dual 
operator. The dual operator has an obvious extension to an algebra automorphism 
of A W .  (If 'D2 = 1 this extension is the unique Clifford algebra automorphism 
extending 2). If 'D2 = -1 this extension is the unique isomorphism of Clifford 
algebras extending 'D considered as an isometry from (W,  h) into (W, -h)-see e.g. 
Harvey 1990, p 182.) We find, most easily by using (4.2) and (4.6) and considering 
representatives in End S, that 

'Da(u) = O k u )  ( 4 . 9 ~ )  
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and 

m 4 )  = fcr(F'4) (4.9b) 

the sign being that of V'. Letting & and 6 be the linear maps on the symmetric 
products obtained naturally from a and p, we obtain a commutative diagram of linear 
maps 

V o V  -% A3W 
g C 3 g  1 1 2 )  

B V'oV' - A3W 

This exhibits the intertwining of metric and dual operator mentioned in the introduc- 
tion. The results (4.9) taken with (3.7) lead also to the formulae 

(4. loa) 

(4.106) 

where g ( z ) (  I ) is the extension to A W  of the inner product g(') ,  this extension 
defined in the manner of the extension h( I ) in (2.7), and the sign is again that 
of D2.  (In the definite and split metric signature cases, all a-triplanes are of type 
(+ + +) and (+ - -), respectively, with respect to g ( z ) ;  in the Lorentzian metric 
case, all a-triplanes are of type (- - -) or (t t -) with respect to g ( 2 ) ;  so, at least 
when U = U ,  one can see that the right-hand side of (4.10h) is non-negative for a real 
metric 9.) We note from (4.10a) and the remark following (3.7) that g (  U ,  U )  = 0 if 
and only if the intersection of a(.) and V a ( v )  is non-trivial; and from (4.10b) that 
1 g ( u , u ) l  is the g(,)-volume of a(.). 

It is not difficult to see the action of a dual operator in the projective space of V. 
The four points determined by an orthonormal basis span a tetrahedron whose edges 
represent bivectors; the three edges passing through [ e r ]  represent the a-triplane of 
el and the face opposite [ e r ]  represents the P-triplane of g ( e l ) .  The dual operator 
maps each edge to the edge not meeting it. A vector U is null if and only if the dual 
operator maps some projective line through [ U ]  into another such line (and hence, 
because a[u] n p [ g u ]  is then two-dimensional, the dual operator necessarily maps an 
entire projective plane through [ U ]  into itself.) 

5. Applications 

We briefly outline some applications. For each metric signature type and for the 
complex case, there is a correspondence between the set of metrics and a certain set 
of dual operators. These correspondences are made precise in Harnett (1991), but 
the proofs there involve special choices of bases of bivectors. With the perspective 
gained here, those correspondences can be derived more elegantly. 

A well-known self-dual formalism for four-dimensional Lorentzian geometry has 
been used in connection with classification of Weyl curvature tensors and the study 
of null congruences (e.g. Israel 1979). Its effectiveness depends on dealing only with 
self-dual bivectors, but the natural representation of the full bivector Clifford alge- 
bra can add a helpful perspective and it provides scope for working with only real 
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quantities. Passing to the selfdual formalism from the full Clifford algebra involves 
a volume element for the self-dual subspace such as S in (4.5). (Many identities 
in Israel's monograph can be simply understood by restricting identities in the Clif- 
ford algebra representation to the self-dual sector.) In fashioning a formulation of 
real general relativity without a metric (Capovilla et al 1991b) the real Clifford al- 
gebra is relevant. (The result of the appendix of that paper may be recognized as 
a generalization to Pin(W,h)  of the proposition of section 2 herein.) One may 
look at four-dimensional geometry from the perspective of the bivector bundle with a 
dual operator (equivalently, with a distinguished three-dimensional sub-bundle non- 
degenerate with respect to the canonical conformal structure) rather than the tangent 
bundle with a metric. Though it may be cumbersome, it is reasonable to consider 
connections on the principal S0(3,3)-bundle of frames for the bivector bundle. Cor- 
responding to the canonical 1-form Oa of the SL(4, R)-bundle of tangent frames one 
has a canonical form, essentially Oa A O b ,  on the S0(3,3)-bundle; corresponding to 
torsion 2-form 0" one finds what is essentially 01" A Ob]  on the S0(3,3)-bundle. 

In the recent self-dual two-form formulation of general relativity (Capovilla et 
d 1991a and Frauendiener and Mason 1990), one starts with a triple of self-dual 
2-forms represented by a symmetric two-component-indexed 2-form C A B  satisfying 
a certain condition. The condition turns out to be exactly that F H C A B ( F )  is a 
Clifford map for the self-dual subspace. Assuming another such Clifford map for the 
anti-self-dual subspace, it is somewhat curious that the two resulting spin spaces can 
be identified with the two half-spin spaces for the tangent space.. We can see how 
this arises as follows. From the two Clifford maps one can build a representation for 
the full Clifford algebra-after the manner described in Penrose and Rindler (1986, 
p 458)-which must be equivalent to the natural representation on V f3 V'. One 
of the block matrix components of an intertwining map that effects the equivalence 
gives an isomorphism of V with the tensor product of the two spin spaces. That 
this isomorphism yields a Clifford map for V is a consequence of an identity (to be 
expected) involving the intertwining map, the inner product structures on the two spin 
spaces and the inner product E on the space V fB V' of the natural representation. 

In the complex case, the relation established between dual operators and metria 
yields an account of some projective geometry that (besides its intrinsic interest) 
pertains to the twistor description of momentum and angular momentum. Let T be 
four-dimensional complex vector space equipped with a volume form E .  The set of 
simple elements in A2T determines a 4-quadric in P(A2T), which we identify with 
the Grassmannian M of 2-planes in T via the Plucker correspondence, [w A 21 ci 
S P { W , Z } .  Now introduce a non-degenerate symmetric bilinear form A on T-a 
'metric'; but also, in the setting of twistor theory (Penrose and Rindler 1986), a 
'kinematic twistor' representing an elementary particle. The form A determines the 
set C of X E M such that A(w,r) = 0 for all w,z E X. C is known to be the 
disjoint union of two conics (CP's) that parametrize the two families of projective 
tines that generate the 2quadric Q in PT defined by A ( z , z )  = 0 (Hughston and 
Hurd 1983, p 309). One of the conics may be viewed as the complex mass-centre 
world line of the elementary particle represented by A. One can show, using (4.9), 
that C is the trace in M of the fixed point set of the projectivized dual operator 
'D (with 'Dz = 1) associated to A. (To see a connection between the two conics 
making up C, it is worth noting that each t E Q determines a 'D-invariant projective 
line 4.4 n ~ [ A z ]  in P(A2T) meeting each conic once, these meetings occurring at 
the points X and Y for which the projective lines PX and PY in PT meet at 2.) 
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Thus a nondegenerate kinematic twistor A determines an involution 'D of M that 
fixes the world line of the represented particle. We can ask to see explicitly how 
2, acts on points in an affine Minkowski space in M. The result for ordinary non- 
singular kinematic twistors (e.g. equation (6.3.11) of Penrose and Rindler 1986) is 
that 'D reflects along the hyperplanes perpendicular to the 4-momentum and across 
the complex mass-centre world line. For a particle with no intrinsic spin, this world 
line is the real world line of the particle. For a particle with intrinsic spin thii 
'world line' determined by A is displaced from the real world line by i times a vector 
proportional to the Pauli-Lubanski spin vector (Penrose and Rindler 1986, pp 419- 
420), but the description of 'D is the same. Certain non-degenerate forms A represent 
uniformly accelerated particles (Harnett 1989); for such A the mass-centre world line 
consists of the two branches of a timelike hyperbola and there is a distinguished 
point 0 in real affine Minkowski space between the branches. In this case 19 is 
the inversion z c z/(azz2) in 0 (where 0 is the acceleration parameter and z is 
the displacement from 0) followed by the reflection through 0 along the osculating 
plane of the hyperbola. 
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